The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis.

نویسندگان

  • U Häcker
  • X Lin
  • N Perrimon
چکیده

We have identified and characterized a Drosophila gene, which we have named sugarless, that encodes a homologue of vertebrate UDP-glucose dehydrogenase. This enzyme is essential for the biosynthesis of various proteoglycans, and we find that in the absence of both maternal and zygotic activities of this gene, mutant embryos develop with segment polarity phenotypes reminiscent to loss of either Wingless or Hedgehog signaling. To analyze the function of Sugarless in cell-cell interaction processes, we have focused our analysis on its requirement for Wingless signaling in different tissues. We report that sugarless mutations impair signaling by Wingless, suggesting that proteoglycans contribute to the reception of Wingless. We demonstrate that overexpression of Wingless can bypass the requirement for sugarless, suggesting that proteoglycans modulate signaling by Wingless, possibly by limiting its diffusion and thereby facilitating the binding of Wingless to its receptor. We discuss the possibility that tissue-specific regulation of proteoglycans may be involved in regulating both Wingless short- or long-range effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development.

The Drosophila sugarless and sulfateless genes encode enzymes required for the biosynthesis of heparan sulfate glycosaminoglycans. Biochemical studies have shown that heparan sulfate glycosaminoglycans are involved in signaling by fibroblast growth factor receptors, but evidence for such a requirement in an intact organism has not been available. We now demonstrate that sugarless and sulfateles...

متن کامل

Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling.

We have identified the Drosophila UDP-glucose dehydrogenase gene as being involved in wingless signaling. Mutations in this gene, called kiwi, generate a phenotype identical to that of wingless. UDP-glucose dehydrogenase is required for the biosynthesis of UDP-glucuronate, which in turn is utilized in the biosynthesis of glycosaminoglycans. By rescuing the kiwi phenotype with both UDP-glucurona...

متن کامل

Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila.

In vitro experiments suggest that glycosaminoglycans (GAGs) and the proteins to which they are attached (proteoglycans) are important for modulating growth factor signaling. However, in vivo evidence to support this view has been lacking, in part because mutations that disrupt the production of GAG polymers and the core proteins have not been available. Here we describe the identification and c...

متن کامل

Wingless signaling modulates cadherin-mediated cell adhesion in Drosophila imaginal disc cells.

Armadillo, the Drosophila homolog of beta-catenin, plays a crucial role in both the Wingless signal transduction pathway and cadherin-mediated cell-cell adhesion, raising the possibility that Wg signaling affects cell adhesion. Here, we use a tissue culture system that allows conditional activation of the Wingless signaling pathway and modulation of E-cadherin expression levels. We show that ac...

متن کامل

The Drosophila smoothened Gene Encodes a Seven-Pass Membrane Protein, a Putative Receptor for the Hedgehog Signal

Smoothened (smo) is a segment polarity gene required for correct patterning of every segment in Drosophila. The earliest defect in smo mutant embryos is loss of expression of the Hedgehog-responsive gene wingless between 1 and 2 hr after gastrulation. Since smo mutant embryos cannot respond to exogenous Hedgehog (Hh) but can respond to exogenous Wingless, the smo product functions in Hh signali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 124 18  شماره 

صفحات  -

تاریخ انتشار 1997